

A Tiny Room in a Tiny World
Lee Djavaherian, speaker

2015 US IRDC, Atlanta, May 30-31

But if you are INSIDE the box, computation looks
very different, it looks like movement, pattern,
our lives.

Every secret in every box is just a new box with a
new secret. There is no actual treasure here, just
a 0 or a 1, a this or a that. The treasure is the
pattern itself, the structure, the journey.

The Roguelike is a journey of computation, an
abstraction of a dualistic universe; the adventurer
and the place to adventure; the halls, the rooms, a
giant fractal tree of information expression.

Eamon – The Beginners Cave (1980)
by Donald Brown

Golden age of electronic RPGs
(1980-1982)

● Rogue, Unix, C, 1980
● Eamon, Apple II, BASIC, 1980
● Akalabeth, Apple II, BASIC, 1980
● Ultima, Apple II, BASIC & Assembly, 1981
● Dark Tower, electronic board game, Assembly?, 1981
● Tunnels of Doom, TI-99/4A, TI GPL, 1982
● Chase-N-Counter (Treasure Trek), electronic LCD
game, Assembly?, 1982

And then...

Video Game Crash of 1983

Me

Eamon “town”
Hall of the Guild of Free Adventurers

Eamon – non-modal combat

Eamon stats

Eamon commands

Akalabeth: World of Doom (1980)
by Richard Garriott

Akalabeth – non modal combat

Dark Tower (1981)
Milton Bradley

2 D batteries, 12000 mAh

Tunnels of Doom (1982)
by Kevin Kenney

Tunnels of Doom – Giant Rat

Tunnels of Doom – modal combat

Tunnels of Doom overhead map

Tunnels of Doom general store

Chase-N-Counter, GCE (1982)
2 SR44 batteries (200 mAh)

Treasure Trek

Going after the treasure

Roguelike “core” in early games

● Rogue used ASCII as spatial symbols, overhead view
● Eamon used ASCII as pure English, to narrate the world
● Garriott's Akalabeth dungeons used 1st person perspective,
rooms/halls single unit, one monster per unit

● Tunnels of Doom used 1st person, but combat took place in room
with interior space larger than 1 unit

● Dark Tower used cardboard for the game map, the cpu keeping
track of position. Not a dungeon crawl, but overhead map
combat, like Ultima's land view

● Chase-N-Counter, used low-power LCD segments for game map, and
had joystick.

Why a Microcontroller?
●The physical limitations of the early hardware actually added
mystique to the games (slow map generation, visuals lacking
detail or no visuals at all)

●In the early 1980's dungeon crawls, you treaded slowly, not as
slow as a paper-based RPG, but much slower than a modern
roguelike.

●Just staring at an empty hall or trying to figure out what to
say to a parser is fascinating since anything is possible.

●It is a small physical “object”, and ties you to the physical
world (like Garriott's peculiar obsession with having working
chairs in his MMORPGs)

● Being small and self-contained with a hidden binary (lock
bits), a it is an ideal “magical box” with secrets only
revealed to the determined adventurer.

● The roguelike doesn't just have to have permadeath, it can
also incorporate perma-end-of-world, since the game can
only be played once if there is no internal procedural
generation and the EEPROM is set to self-destruct.

● They are cheaper and less complicated than FPGAs and have
extremely low power requirements (more on this later).

● On a modern computer when you add more features, the
program size gets larger and more inefficient. On a
microcontroller, as you add more features, the program size
remains the same, but becomes more efficient. The act of
programming becomes an adventure in itself, sort of like a
“Quest to reach the Landauer Limit”.

Why an AVR?

● It is well-supported by the open-
source GCC complier.

● The popularity of the Arduino, being
AVR-based, means that there is a lot
of “indirect” information about AVR
microcontrollers if you need it.

Why ATTiny 1634?

● It comes with 16 KB flash (the more, the better)
● It includes a very low power mode
● It has a hardware UART (2 actually)
● The same MISO/MOSI lines also function as a UART.
● It has capacitive touch (but I decided not to use it)
● It is inexpensive (under $2 in the US)
● No additional programmer is needed. A $20 Raspberry Pi
A+ will work as both a programmer and a development
workstation.

Atmel ATTiny 1634

Time/Space/Speed Comparison
Approximated typical specs (kB and Mhz)

● A modern PC has approximately 8 million times the RAM, 400 times
the clock cycles, 60 million times the storage of an ATTiny1634.

● Modern PC: 8,000,000K RAM, 1,000,000,000K HD, 3000+ Mhz
● Modern smartphone: 3,000,000K RAM, 32,000,000K Flash, 2000 Mhz
● Raspberry Pi A+: 256,000K RAM, 32,000,000K Flash, 700+ Mhz
● Commodore 64: 64K RAM, ~4-16K ROM Cart, 170K Floppy, 1 Mhz
● Apple II: 48K RAM, 140K Floppy, 1 Mhz
● TI-99/4A: 16K RAM, ~8-32K ROM Cart, 92K Floppy, 3 Mhz
● ATtiny1634: 1K RAM, 16K Flash, 0.25K EEPROM, 8 Mhz (int.
oscillator)

But...

Atari 2600 (1977)
● It had 1/8th the resources of an ATTiny1634!
● 128 bytes RAM. BYTES!!
● 2 to 4K Cartridge ROM!!
● But they still made very entertaining games!
● If the Atari programmers could do it in
Assembly in the 1970's, then surely an
entertaining roguelike can be created in C
language with 8 times the RAM, ROM, and speed!

Development environment
● Hardware: Raspberry Pi, ATtiny1634
● Software: Arch Linux, avr-gcc, avr-binutils, avr-libc, avrdude,
wiringpi, minicom, text editor

● Remove ttyAMA0 lines from /boot/cmdline.txt and disable systemd
serial_getty@ttyAMA0.service to prevent Arch Linux serial conflict

● Turn off hardware flow control in minicom, enable wordwrap, set
baud rate to 9600

● Cross-connect the Raspberry Pi's UART lines Tx, Rx to the Rx, Tx
lines on the AVR, so the Pi can communicate with the AVR
immediately after programming since its SPI MOSI, MISO ports
conveniently uses the same lines.

● GPIO jumper wires work without resistors since everything is 3.3
volt logic (Just make sure NOT to send an output high over SPI
lines while connected.)

Getting Avrdude to work correctly
● Recompile Avrdude with “--enable-linuxgpio=yes”
option. This can be done easily using the ABS (Arch
Build System) and editing the PKGBUILD file.

● Edit /etc/avrdude.conf to enable linuxgpio programmer
using GPIO lines 14,15 for MOSI,MISO respectively.

● There is a bug in Avrdude 6.1 causing ATTiny1634 flash
memory errors when using linuxgpio. See
http://savannah.nongnu.org/bugs/?40144 for workaround
and edit /etc/avrdude.conf to fix.

● Avrdude 6.1 linuxgpio does not return the GPIO pins
back to their previous functions which breaks the UART
after it finishes programming. Use Wiringpi to return
GPIO pins 14, 15 back to their original UART mode
(ALT0).

http://savannah.nongnu.org/bugs/?40144

Power
● ATtiny1634 can run up to 8Mhz on an internal
oscillator using only a 3 volt CR2032 battery
and uses only about 500 nanoamps when powered
down waiting for interrupt (event)

● A 225 mAh CR2032 losing .5 uA would take about
36 years to deplete! The shelf life of the
battery is usually less than 10 years.

● What if...

Image credit: NASA/SDO

TI-36 Solar Calculator (1989)
Zero batteries

A Solar Roguelike
● The ATTiny 1634 can easily run off of a $7 3.6 volt 100mA
monocrystalline solar cell, drawing around 3 mA in Active mode
(and low power LED's and piezo elements can draw < 2mA)

● Indoor lighting can produce enough current to power the device.
● The data retention of the device at room temperature is
approximately 100 years and the solar cell may exceed 50 years.

● Internal EEPROM (256 bytes) is barely large enough to save game
data in case of power failure (darkness), allowing 100,000
write cycles.

● Chip can be set for brown-out detection to auto-reset if
voltage gets too low, preventing data corruption/malfuction.

C Language

● C Language is pretty much required (no
objects)

● C++ can be used with AVR-GCC, but is
incomplete and restricted.

● Interpreted languages like Python or BASIC
are too large to fit on the Attinys, and
using Assembly for a roguelike is very
difficult.

User Interface options
● Create a dedicated electronic UI (Capacitive
touch is possible but may not be ideal)

● Create a physical game board
● Create circuitry to interface game controllers
and/or monitor

● Some people have generated NTSC and PAL
composite video using simple circuits

● Turn the AVR into a UART server

Numeral systems for representation
● By selecting and balancing a positional numeral system, you
can express the same information in different ways on a
game board.

● Take the number of distinct numerals that you want to use
(the base) and raise that to the power of the number of
positions you want to use to determine the largest number
you can represent.

● The Ancient Sumerians, for example, used base 60. This is
likely why we have 60 minutes in a hour, 60 seconds in a
minute, 360 degrees in a compass (60 x 6), and why we have
a 12-hour clock and 12-sign zodiac (60 / 5).

International Morse Code
● It is not a binary code but can be
converted to binary using padding

● Base 26 can be achieved with just A-Z.
● Timing can be difficult to accurately
encode/decode. It is better to use
separate circuits for dits and dahs or
emulate a horizontal electronic keyer.

● Sound makes use of our auditory memory
to greatly improve Morse recognition.
It works surprisingly well for human
beings, being designed in the 1840's.

Sometimes Morse can mimic the
actual action

Hit

(H)

. . . .

dit,dit,dit,dit

(like pounding your fist)

Frequent commands can use NEAT

The Map
● 1 KB of ram is not enough to store a map, so procedurally generating a map
cannot easily be done

● A 32x32 grid of 8-bit variables consumes 1024 bytes, all available RAM!
● Program space is important on AVRs since they are Harvard architecture
devices. You can essentially move some data structures to flash (ROM).
Modifying the flash while running (SPM) is possible, but it has to be done
in pages. A good generator still requires a lot of space to work
efficiently.

● It is ideal to generate the map on another computer and place it into
program space during compilation (like 2-stage compiling)

● Levels must be large and shallow or small and deep due to low RAM/ROM
● Generator can easily use PRINTF and Unix redirection to save to a header .h
file for compilation to AVR

● A gigantic monster/item pool can then be created on the generator machine
and only a random subset is used for AVR compilation

● Halls one unit in size will save space (even rooms can be one unit)

AVR as UART Server
● The hardware UART using the internal
oscillator works well for a small roguelike

● 9600 baud is fast enough to display small map
● ANSI escape codes can be used for more speed
and control

● <esc>[2J will clear the screen between redraws
● Avoid using PRINTF on AVR to save space.
Create PUT, PUTS, GET, GETS routines to talk
to the UART registers directly

Leveraging CPU intelligence
● Circuit design can be simplified
● Can flip port states on the fly (input, output,
tri-state, pull-ups)

● Logical tests for switch states, active scanning
● Use wake-up keys for power-up (interrupt)
● Blink mutually exclusive LED circuits faster than
persistence of vision to simulate simultaneity

● De-bounce unreliable switches

Proof-of-Concept
● I built a proof-of-concept demo of a core game engine only; will add
balanced gameplay later. It uses around 11K, leaving only 5K left.

● Made use of C struct bitfields to save space
● Stored items/actors in lists (arrays of structs), one with dynamic
data (in RAM), one with static data (in Program Space)

● Map levels are stored as half-byte (nibble) arrays
● Used ragged 1-dimensional arrays to save space (are contiguous)
● Created message queue and repeat event flagging to limit messages
● Created Morse decoder, used lookup tables to reference words
● Created Success/Fail responses to limit messages
● Tried to make it both blind and deaf playable (LED + piezo)

Remember, anything is
possible...

greatfractal.com/TinyRoomTinyWorld.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

